Search results for "Signal classification"

showing 4 items of 4 documents

Performance of the Shape of Partial Discharge Signal Wireless Probes

2013

This paper focuses on the evaluation of the performances of three different antenna sensors suitable of Partial Discharge (PD) measurements. Monopole, triangular and spherical antennas were simulated by means of the surface moment method. The transmitting system is modeled by a power electronic device with a fault current between two metal plate. The shape of the simulated transmitted and received signals have been compared to verify the sensor the provides the best fidelity among the three. The auto-correlation function and the Pearson correlation index are adopted here for the comparison. A discussion on the dynamic characteristic of the different antenna probes and their use in different…

EngineeringSignal processingsignal classificationDirectional antennaantenna probesbusiness.industryPartial Discharges; antenna probes; Signal Processing; diagnosticsPartial DischargesSettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettricidiagnostics.SignalPower (physics)Moment (mathematics)Settore ING-IND/31 - ElettrotecnicaPartial dischargeSignal ProcessingElectronic engineeringdiagnosticsProbe designWirelessantenna probeAntenna (radio)Partial DischargebusinessComputer Science::Information Theory
researchProduct

Ventricular Fibrillation and Tachycardia Detection Using Features Derived from Topological Data Analysis

2022

A rapid and accurate detection of ventricular arrhythmias is essential to take appropriate therapeutic actions when cardiac arrhythmias occur. Furthermore, the accurate discrimination between arrhythmias is also important, provided that the required shocking therapy would not be the same. In this work, the main novelty is the use of the mathematical method known as Topological Data Analysis (TDA) to generate new types of features which can contribute to the improvement of the detection and classification performance of cardiac arrhythmias such as Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT). The electrocardiographic (ECG) signals used for this evaluation were obtained from…

Fluid Flow and Transfer ProcessesProcess Chemistry and TechnologyGeneral EngineeringGeneral Materials ScienceInstrumentationelectrocardiography analysis; ventricular arrhythmia detection; ventricular fibrillation detection; ventricular tachycardia detection; ECG signal classification; Topological Data Analysis; representation of point cloud; persistent diagram representation; landscape representation; silhouette representationInfermeria cardiovascularSistema cardiovascularComputer Science ApplicationsApplied Sciences; Volume 12; Issue 14; Pages: 7248
researchProduct

Signal-to-noise ratio in reproducing kernel Hilbert spaces

2018

This paper introduces the kernel signal-to-noise ratio (kSNR) for different machine learning and signal processing applications}. The kSNR seeks to maximize the signal variance while minimizing the estimated noise variance explicitly in a reproducing kernel Hilbert space (rkHs). The kSNR gives rise to considering complex signal-to-noise relations beyond additive noise models, and can be seen as a useful signal-to-noise regularizer for feature extraction and dimensionality reduction. We show that the kSNR generalizes kernel PCA (and other spectral dimensionality reduction methods), least squares SVM, and kernel ridge regression to deal with cases where signal and noise cannot be assumed inde…

Noise model02 engineering and technologySNR010501 environmental sciences01 natural sciencesKernel principal component analysisSenyal Teoria del (Telecomunicació)Signal-to-noise ratioArtificial Intelligence0202 electrical engineering electronic engineering information engineeringHeteroscedastic0105 earth and related environmental sciencesMathematicsNoise (signal processing)Dimensionality reductionKernel methodsSignal classificationSupport vector machineKernel methodKernel (statistics)Anàlisi funcionalSignal ProcessingFeature extraction020201 artificial intelligence & image processingSignal-to-noise ratioComputer Vision and Pattern RecognitionAlgorithmSoftwareImatges ProcessamentReproducing kernel Hilbert spaceCausal inference
researchProduct

Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

2020

The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitori…

ElectrodiagnòsticRemote patient monitoringComputer science02 engineering and technologyElectroencephalographylcsh:Technologylcsh:Chemistryepileptogenic focus03 medical and health sciences0302 clinical medicineClassifier (linguistics)0202 electrical engineering electronic engineering information engineeringmedicineGeneral Materials ScienceEpilepsy surgeryLatency (engineering)Field-programmable gate arrayInstrumentationThroughput (business)lcsh:QH301-705.5FPGAFluid Flow and Transfer Processesmedicine.diagnostic_testbusiness.industrylcsh:TProcess Chemistry and Technologyreal-time implementationepileptic eeg signal classificationGeneral EngineeringProcess (computing)Pattern recognitionelectroencephalogramlcsh:QC1-999Computer Science Applicationsfpgalcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040epileptic EEG signal classificationepilepsy020201 artificial intelligence & image processingEnginyeria biomèdicaArtificial intelligenceElectroencefalografiabusinesslcsh:Engineering (General). Civil engineering (General)030217 neurology & neurosurgerylcsh:Physics
researchProduct